lunes, 10 de septiembre de 2012


Electrónica

La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.

Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la gran construcción de circuitos electrónicos para resolver problemas prácticos forman parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.



Historia de la electrónica


Se considera que la electrónica comenzó con el diodo de vacío inventado por John Ambrose Fleming en 1904. El funcionamiento de este dispositivo está basado en el efecto Edison. Edison fue el primero que observó en 1883 la emisión termoiónica, al colocar una lámina dentro de una bombilla para evitar el ennegrecimiento que producía en la ampolla de vidrio el filamento de carbón. Cuando se polarizaba positivamente la lámina metálica respecto al filamento, se producía una pequeña corriente entre el filamento y la lámina. Este hecho se producía porque los electrones de los átomos del filamento, al recibir una gran cantidad de energía en forma de calor, escapaban de la atracción del núcleo (emisión termoiónica) y, atravesando el espacio vacío dentro de la bombilla, eran atraídos por la polaridad positiva de la lámina.

El otro gran paso lo dio Lee De Forest cuando inventó el tríodo en 1906. Este dispositivo es básicamente como el diodo de vacío, pero se le añadió una rejilla de control situada entre el cátodo y la placa, con el objeto de modificar la nube electrónica del cátodo, variando así la corriente de placa. Este fue un paso muy importante para la fabricación de los primeros amplificadores de sonido, receptores de radio, televisores, etc.

Conforme pasaba el tiempo, las válvulas de vacío se fueron perfeccionando y mejorando, apareciendo otros tipos, como los tetrodos (válvulas de cuatro electrodos), los pentodos(cinco electrodos), otras válvulas para aplicaciones de alta potencia, etc. Dentro de los perfeccionamientos de las válvulas se encontraba su miniaturización.

Pero fue definitivamente con el transistor, aparecido de la mano de Bardeen y Brattain, de la Bell Telephone Company, en 1948, cuando se permitió aún una mayor miniaturización de aparatos tales como las radios. El transistor de unión apareció algo más tarde, en 1949. Este es el dispositivo utilizado actualmente para la mayoría de las aplicaciones de la electrónica. Sus ventajas respecto a las válvulas son entre otras: menor tamaño y fragilidad, mayor rendimiento energético, menores tensiones de alimentación, etc.

El transistor no funciona en vacío como las válvulas, sino en un estado sólido semiconductor (silicio), razón por la que no necesita centenares de voltios de tensión para funcionar.

A pesar de la expansión de los semiconductores, todavía se siguen utilizando las válvulas en pequeños círculos audiófilos, porque constituyen uno de sus mitos1 más extendidos.

El transistor tiene tres terminales (el emisor, la base y el colector) y se asemeja a un triodo: la base sería la rejilla de control, el emisor el cátodo, y el colector la placa. Polarizando adecuadamente estos tres terminales se consigue controlar una gran corriente de colector a partir de una pequeña corriente de base.

En 1958 se desarrolló el primer circuito integrado, que alojaba seis transistores en un único chip. En 1970 se desarrolló el primer microprocesador, Intel 4004. En la actualidad, los campos de desarrollo de la electrónica son tan vastos que se ha dividido en varias disciplinas especializadas. La mayor división es la que distingue la electrónica analógica de la electrónica.

La electrónica es, por tanto, una de las ramas de la ingeniería con mayor proyección en el futuro, junto con la informática.




Personajes históricos


1. Alessandro Giuseppe Antonio Anastasio Volta


(18 de febrero de 1745 – 5 de marzo de 1827) fue un físico italiano, famoso principalmente por haber desarrollado la pila eléctrica en 1800. Alessandro Volta, o Conde Alessandro Giuseppe Antonio Anastasio Volta, físico y pionero en los estudios de la electricidad, nació en Como, Lombardía, Italia, el 18 de febrero de 1745, en el seno de una familia de nobles. A los siete años falleció el padre y la familia tuvo que hacerse cargo de su educación. Desde muy temprano se interesó en la física y a pesar del deseo de su familia de que estudiara una carrera jurídica, él se las ingenió para estudiar ciencias

La unidad de fuerza electromotriz del Sistema Internacional de Unidades lleva el nombre de voltio en su honor desde el año 1881. En1964 la UAI decidió en su honor llamarle Volta a un astroblema lunar.


2. Hans Christian Orsted


(pronunciado en español Oersted. Rudkobing, Dinamarca, 14 de agosto de 1777 – Copenhague, Dinamarca9 de marzo de 1851) fue un físico y químico danés, influido por el pensamiento alemán de Immanuel Kant y también de la filosofía de la Naturaleza.

Fue un gran estudioso del electromagnetismo. En 1813 ya predijo la existencia de los fenómenos electromagnéticos, que no demostró hasta 1819, junto con André-Marie Ampère, cuando descubrió la desviación de una aguja imantada al ser colocada en dirección perpendicular a un conductor eléctrico, por el que circula una corriente eléctrica, demostrando así la existencia de uncampo magnético en torno a todo conductor atravesado por una corriente eléctrica, e iniciándose de ese modo el estudio del electromagnetismo. Este descubrimiento fue crucial en el desarrollo de la electricidad, ya que puso en evidencia la relación existente entre la electricidad y el magnetismo. Oersted es la unidad de medida de la reluctancia magnética. Se cree que también fue el primero en aislar el aluminio, por electrólisis, en 1825, y en 1844 publicó su Manual de física mecánica.1

Influido por su padre, que era farmacéutico, se orientó por los estudios de farmacia en 1797, al cumplir los veinte años. Tres años después, se licenció en medicina, lo que le hubiese podido servir para asegurarse un futuro como médico.

Sin embargo, su pasión por la química -y en especial por las fuerzas electroquímicas- que permanecía intacta unida a un interés creciente por la filosofía de la Naturaleza, desencadenaron todas sus reflexiones y explican en buena medida las razones por las que se interesó por los trabajos de J. W. Ritter sobre el galvanismo.


3. André-Marie Ampère

(Lyon, 20 de enero de 1775 - Marsella, 10 de junio de 1836), fue un matemático y físico francés. Inventó el primer telégrafo eléctrico y, junto a François Arago, el electroimán. Formuló en 1827 la teoría del electromagnetismo. El amperio(en francés ampère) se llama así en su honor.




5. Michael Faraday

(Newington, 22 de septiembre de 1791 - Londres, 25 de agosto de 1867) fue un físico y químico británicoque estudió el electromagnetismo y la electroquímica.

Fue discípulo del químico Humphry Davy, y ha sido conocido principalmente por su descubrimiento de la inducción electromagnética, que ha permitido la construcción de generadores y motores eléctricos, y de las leyes de la electrólisis, por lo que es considerado como el verdadero fundador del electromagnetismo y de la electroquímica.

En 1831 trazó el campo magnético alrededor de un conductor por el que circula una corriente eléctrica (ya descubierta por Oersted), y ese mismo año descubrió la inducción electromagnética, demostró la inducción de una corriente eléctrica por otra, e introdujo el concepto de líneas de fuerza, para representar los campos magnéticos. Durante este mismo periodo, investigó sobre la electrólisis y descubrió las dos leyes fundamentales que llevan su nombre:

La masa de la sustancia liberada en una electrólisis es directamente proporcional a la cantidad de electricidad que ha pasado a través del electrolito masa = equivalente electroquímico, por la intensidad y por el tiempo (m = c I t).

Las masas de distintas sustancias liberadas por la misma cantidad de electricidad son directamente proporcionales a sus pesos equivalentes.

Con sus investigaciones se dio un paso fundamental en el desarrollo de la electricidad al establecer que el magnetismo produce electricidad a través del movimiento.


6. William Sturgeon

(22 de mayo de 1783 - 4 de diciembre de 1850), fue un físico e inventor británico que construyó, en 1825, el primerelectroimán e inventó el primer motor eléctrico práctico.

El primer electroimán era un trozo de hierro con forma de herradura envuelto por una bobina enrollada sobre sí misma. Sturgeon demostró su potencia levantando 4 kg con un trozo de hierro de 200 g envuelto en cables por los que hizo circular la corriente de unabatería. Sturgeon podía regular su electroimán, lo que supuso el principio del uso de la energía eléctrica en máquinas útiles y controlables, estableciendo los cimientos para las comunicaciones electrónicas a gran escala. Este dispositivo condujo a la invención del telégrafo, el motor eléctrico, y muchos otros dispositivos de base a la tecnología moderna. En 1832 inventó el commutator para motores eléctricos.1



7. Georg Simon Ohm

(Erlangen; 16 de marzo de 1789 - Múnich; 6 de julio de 1854) fue un físico y matemático alemán que aportó a la teoría de la electricidad la Ley de Ohm, conocido principalmente por su investigación sobre las corrientes eléctricas. Estudió la relación que existe entre la intensidad de una corriente eléctrica, su fuerza electromotriz y la resistencia, formulando en 1827 la ley que lleva su nombre que establece que: I = V/R También se interesó por la acústica, la polarización de las pilas y las interferencias luminosas. La unidad de resistencia eléctrica, el ohmio, recibe este nombre en su honor.1 Terminó ocupando el puesto de conservador del gabinete de Física de la Academia de Ciencias de Baviera.



8. Gustav Robert Kirchhoff

(Königsberg, 12 de marzo de 1824 - Berlín, 17 de octubre de 1887) fue un físico prusiano cuyas principales contribuciones científicas estuvieron en el campo de los circuitos eléctricos, la teoría de placas, la óptica, laespectroscopia y la emisión de radiación de cuerpo negro.

Inventó el espectroscopio y junto con Bunsen, descubrió el rubidio y el cesio por métodos espectrales. Identificó la raya D del espectro solar como la producida por sodio vaporizado. Descubrió las leyes generales que rigen el comportamiento de un circuito eléctrico. Se dedicó al estudio de la Termodinámica y realizó investigaciones sobre la conducción del calor. Estudió los espectros del Sol, de las estrellas y de las nebulosas, confeccionando un atlas del espacio y demostró la relación existente entre la emisión y la absorción de la luz por los cuerpos incandescentes.

Kirchhoff propuso el nombre de radiación de cuerpo negro en 1862. Es responsable de dos conjuntos de leyes fundamentales, en la teoría clásica de circuitos eléctricos y en la emisión térmica. Aunque ambas se denominan Leyes de Kirchhoff, probablemente esta denominación es más común en el caso de las Leyes de Kirchhoff de la ingeniería eléctrica.


9. Samuel Finley Breese Morse

(Boston, Massachusetts, Estados Unidos, 27 de abril de 1791 – Nueva York, 2 de abril de 1872), fue un inventor y pintor estadounidense, contribuyó a la invención del telégrafo con Joseph Henry y del método de transmisión conocido como código Morse.


10. Ernst Werner M. von Siemens

Werner fue el cuarto hijo de Christian Ferdinand Siemens (1787–1840) y su esposa Eleonore Henriette Deichmann (1792–1839), quienes fundaron una numerosa familia (eran en total catorce hermanos).1 Debido a que su madre murió en 1839 y su padre en 1840 siendo Werner el mayor de los varones debió asumir el papel de padre de sus hermanos. Como su familia perdió los recursos para darle una educación superior, ingresó en una academia de artillería y llegó a ser teniente de artillería del ejército prusiano. A los treinta años de edad en 1847 construyó un nuevo tipo de telégrafo, poniendo así la primera piedra en la construcción de Siemens AG, fundada en octubre de ese mismo año, junto a Johann Georg Halske, mecánico entusiasta de la técnica, (en ese entonces Telegraphen-Bauanstalt von Siemens und Halske) y su primo, el banquero Johann Georg Siemens, de quien procedían los primeros 6.842 táleros del capital inicial de la empresa.

Fue ascendido a la nobleza en 1888, con lo cual el apellido Siemens (de su familia Siemens) pasó a ser "von Siemens", que significa "de Siemens". Murió el 6 de diciembre de 1892 en Berlín (Alemania).

En 1841 desarrolló un proceso de galvanización, en 1846 un telégrafo de aguja y presión y un sistema de aislamiento de cables eléctricos mediante gutapercha, lo que permitió, en la práctica, la construcción y tendido de cables submarinos. Es el inventor del dínamo y uno de los pioneros de las grandes líneas telegráficas transoceánicas, responsable de la línea Irlanda-EE.UU (comenzada en 1874 a bordo del buque Faraday) y Gran Bretaña-India (1870). Es pionero en otras invenciones, como el telégrafo con puntero/teclado para hacer transparente al usuario el código Morse, o la primera locomotora eléctrica, presentada por su empresa en 1879.


11. James Clerk Maxwell

(Edimburgo, Escocia, 13 de junio de 1831 – Cambridge, Inglaterra, 5 de noviembre de 1879). Físico escocés conocido principalmente por haber desarrollado la teoría electromagnética clásica, sintetizando todas las anteriores observaciones, experimentos y leyes sobre electricidad, magnetismo y aun sobre óptica, en una teoría consistente.1 Las ecuaciones de Maxwelldemostraron que la electricidad, el magnetismo y hasta la luz, son manifestaciones del mismo fenómeno: el campo electromagnético. Desde ese momento, todas las otras leyes y ecuaciones clásicas de estas disciplinas se convirtieron en casos simplificados de las ecuaciones de Maxwell. Su trabajo sobre electromagnetismo ha sido llamado la "segunda gran unificación en física",2 después de la primera llevada a cabo por Newton. Además se le conoce por la estadística de Maxwell-Boltzmann en lateoría cinética de gases.


12. William Crookes

(17 de junio de 1832- 4 de abril de 1919) fue un químico inglés, uno de los científicos más importantes en Europa del Siglo XIX, tanto en el campo de la física como en el de la química. Estudió en el Colegio Real de Química de Londres. Fundó la revista de divulgación Chemical News, y fue editor del Quarterly Journal for Science. En 1863 entró a la Royal Societyrecibiendo la prestigiosa medalla para 1875. En 1888 recibe la Medalla Davy, fue nombrado caballero en 1897, la Medalla Copley en 1904 y en 1910 fue nombrado “Sir” recibiendo la Orden del Mérito. Crookes también fue uno de los más importantes y destacados investigadores, y luego defensor, de lo que hoy día se conoce como Espiritismo Científico.


13. Alexander Graham Bell

(Edimburgo, Escocia, Reino Unido, 3 de marzo de 1847 – Beinn Bhreagh, Canadá, 2 de agosto de1922) fue un científico, inventor y logopeda británico. Contribuyó al desarrollo de las telecomunicaciones y la tecnología de la aviación. Su padre, abuelo y hermano estuvieron asociados con el trabajo en locución y discurso (su madre y su esposa eran sordas), lo que influyó profundamente en el trabajo de Bell, su investigación en la escucha y el habla. Esto le movió a experimentar con aparatos para el oído.1 2 Sus investigaciones le llevaron a intentar conseguir la patente del teléfono en América, obteniéndola en 1876,3 aunque el aparato ya había sido desarrollado anteriormente por Antonio Meucci, siendo éste reconocido como su inventor el 11 de junio de 2002.


14. Thomas Alva Edison

(Milan, Ohio, 11 de febrero de 1847 – West Orange, Nueva Jersey, 18 de octubre de 1931)
Hijo de Samuel Ogden Edison, Jr. (1804–1896) y Nancy Matthews Elliott (1810–1871)
Fue un empresario y un prolífico inventor estadounidense que patentó más de mil inventos (durante su vida adulta un invento cada quince días) y contribuyó a darle, tanto a Estados Unidos como a Europa, los perfiles tecnológicos del mundo contemporáneo: las industrias eléctricas, un sistema telefónico viable, el fonógrafo, las películas, etc.1



15. Nikola Tesla

(10 de julio de 1856 – Nueva York, 7 de enerode 1943) fue un inventor, ingeniero mecánico e ingeniero eléctrico y uno de los promotores más importantes del nacimiento de laelectricidad comercial. Se le conoce, sobre todo, por sus numerosas y revolucionarias invenciones en el campo delelectromagnetismo, desarrolladas a finales del siglo XIX y principios del siglo XX. Las patentes de Tesla y su trabajo teórico formaron las bases de los sistemas modernos de potencia eléctrica por corriente alterna (CA), incluyendo el sistema polifásico de distribución eléctrica y el motor de corriente alterna, que tanto contribuyeron al nacimiento de la Segunda Revolución Industrial.

Tesla era étnicamente serbio y nació en el pueblo de Smiljan, en el Imperio Austrohúngaro (actual Croacia). Era ciudadano del imperio austriaco por nacimiento y más tarde se convirtió en ciudadano estadounidense.1 Tras su demostración de comunicación inalámbrica por medio de ondas de radio en 1894 y después de su victoria en la guerra de las corrientes, fue ampliamente reconocido como uno de los más grandes ingenieros eléctricos de los EE. UU. de América.2 Gran parte de su trabajo inicial fue pionero en la ingeniería eléctrica moderna y muchos de sus descubrimientos fueron de suma importancia. Durante este periodo en los Estados Unidos la fama de Tesla rivalizaba con la de cualquier inventor o científico en la historia o la cultura popular,3 pero debido a su personalidad excéntrica y a sus afirmaciones aparentemente increíbles y algunas veces casi inverosímiles, acerca del posible desarrollo de innovaciones científicas y tecnológicas, Tesla fue finalmente relegado al ostracismo y considerado un científico loco.4 5 Tesla nunca prestó mucha atención a sus finanzas. Se dice que murió empobrecido a la edad de 86 años.



16. Paul Julius Gottlieb Nipkow

(22 de agosto de 1860, Lauenburg, Pomerania (en la actualidad Lebork, Polonia) - 24 de agosto de 1940,Berlín alemania) fue un ingeniero e inventor aleman, se le considera uno de los pioneros de la televisión.

Nipkow destacó ya de niño por sus conocimientos en materias científicas. Por ello se graduó en su ciudad natal y posteriormente se matriculó en la escuela técnica de Neustadt (al oeste de Prusia actual Rusia), donde realizó estudios de telefonía. Aparte de sus estudios, se interesó en la disciplina de la óptica, en especial las vertientes de la electrofísica y la fisiológica. Allí fue instruido por grandes profesores como Hermann von Helmhotz y Adolf Slaby.

Ya desde entonces, Nipkow empezó a introducirse en el mundo de la fototelegrafía, un estudio en alza en aquellos tiempos. No sería hasta 1884 cuando consiguió inventar un elemento explorador de la imagen, conocido como disco de Nipkow, consistente en un disco metálico perforado por una serie de agujeros cuadrangulares dispuestos en espiral. Al imprimirle un movimiento giratorio, cada agujero recogía una señal de luz, de intensidad variable según fuera su desplazamiento frente al objeto que estaba analizando. En 1885, Nipkow se trasladó a la oficina imperial de patentes de Berlín para dar de alta su invento, una petición que fue aceptada con efecto retroactivo al 6 de enero de 1884.



19. Heinrich Rudolf Hertz

(Hamburgo, 22 de febrero de 1857 – Bonn, 1 de enero de 1894) fue un físico alemán descubridor del efecto fotoeléctrico y de la propagación de las ondas electromagnéticas, así como de formas de producirlas y detectarlas.



20. Joseph John "J.J." Thomson

nació el 18 de diciembre de 1856 y murió el 30 de agosto de 1940. Fue un científico británico y descubridor del electrón, de los isótopos, e inventor del espectrómetro de masa. En 1906 fue galardonado con el Premio Nobel de Física.


21.John Ambrose Fleming

(Lancaster, 29 de noviembre de 1848 - Devon, 18 de abril de 1945), físico e ingeniero eléctrico británico.
Estudió en el University College School y más tarde en el University College London. En 16 de noviembre de 1904 registro la patente de su invento, el diodo o válvula termoiónicausando el efecto Edison que éste había descubierto en 18831 . Posteriormente en 1905, un año después, patento la "Válvula Fleming" que servia de diodo rectificador antecediendo al triodo y otras estructuras2 . Este invento es considerado el inicio de la electrónica.

Como reconocimiento la Royal Society of Arts de Londres premió a Fleming en el año 1921 con la Gold Albert Medal y en 1929 recibió el título de sir. Fue considerado como uno de los precursores de la electrónica.


22.John William Mauchly

(30 de agosto de 1907 – 8 de enero de 1980) fue un físico estadounidense que, junto con John Presper Eckert, diseñaron la ENIAC, el primer programa y el primer ordenador digital electrónico de propósito general[cita requerida] así como el EDVAC, el Binac y el UNIVAC. Y el primer ordenador comercial hecho en los Estados Unidos.

Los dos empezaron la primera compañía de ordenadores, la Eckert-Mauchly Computer Corporation y fueron pioneros en algunos conceptos fundamentales de los ordenadores, incluyendo el “programa almacenado”, las subrutinas y los lenguajes de programación. Su trabajo, tal y como se expone su primer borrador del informe del EDVAC (1945) y tal y como se explica en las “Moore School Lectures” (1946) influenció una explosión en el desarrollo de ordenadores a finales de los 40 en cualquier parte del mundo.


23. Nick Holonyak

(nacido en Zeigler, Illinois el 3 de noviembre de 1928) inventó el primer LED en 1962 mientras trabajaba comocientífico asesor en un laboratorio de General Electric en Syracuse (Nueva York), y es considerado "el padre del diodo emisor de luz" (por favor lea acerca de Oleg Lósev). Es profesor de Ingeniería eléctrica e Ingeniería informática en la Universidad de Illinois en Urbana-Champaign donde trabaja desde 1993.1




El diodo led.

El LED (Light-Emitting Diode: Diodo Emisor de Luz), es un dispositivo semiconductor que emite luz incoherente de espectro reducido cuando se polariza de forma directa la unión PN en la cual circula por él una corriente eléctrica . Este fenómeno es una forma de electroluminiscencia, el LED es un tipo especial de diodo que trabaja como un diodo común, pero que al ser atravesado por la corriente eléctrica, emite luz . Este dispositivo semiconductor está comúnmente encapsulado en una cubierta de plástico de mayor resistencia que las de vidrio que usualmente se emplean en las lámparas incandescentes. Aunque el plástico puede estar coloreado, es sólo por razones estéticas, ya que ello no influye en el color de la luz emitida. Usualmente un LED es una fuente de luz compuesta con diferentes partes, razón por la cual el patrón de intensidad de la luz emitida puede ser bastante complejo.

Para obtener una buena intensidad luminosa debe escogerse bien la corriente que atraviesa el LED y evitar que este se pueda dañar; para ello, hay que tener en cuenta que el voltaje de operación va desde 1,8 hasta 3,8 voltios aproximadamente (lo que está relacionado con el material de fabricación y el color de la luz que emite) y la gama de intensidades que debe circular por él varía según su aplicación. Los Valores típicos de corriente directa de polarización de un LED están comprendidos entre los 10 y 20 miliamperios (mA) en los diodos de color rojo y de entre los 20 y 40 miliamperios (mA) para los otros LED. Los diodos LED tienen enormes ventajas sobre las lámparas indicadoras comunes, como su bajo consumo de energía, sumantenimiento casi nulo y con una vida aproximada de 100,000 horas. Para la protección del LED en caso haya picos inesperados que puedan dañarlo. Se coloca en paralelo y en sentido opuesto un diodo de silicio común

En general, los LED suelen tener mejor eficiencia cuanto menor es la corriente que circula por ellos, con lo cual, en su operación de forma optimizada, se suele buscar un compromiso entre la intensidad luminosa que producen (mayor cuanto más grande es la intensidad que circula por ellos) y la eficiencia (mayor cuanto menor es la intensidad que circula por ellos).


Funcionamiento fisico del diodo led.


El funcionamiento físico consiste en que, en los materiales semiconductores, un electrón al pasar de la banda de conducción a la de valencia, pierde energía; esta energía perdida se puede manifestar en forma de un fotón desprendido, con una amplitud, una dirección y una fase aleatoria. El que esa energía se manifieste en (calor por ejemplo) va a depender principalmente del tipo de material semiconductor. Cuando Al polarizar directamente un diodo LED conseguimos que por la unión PN sean inyectados huecos en el material tipo N y electrones en el material tipo P; O sea los huecos de la zona p se mueven hacia la zona n y los electrones de la zona n hacia la zona p, produciéndose por consiguiente, una inyección de portadores minoritarios.



Aplicaciones de el diodo led.


Los diodos infrarrojos (IRED) se emplean desde mediados del siglo XX en mandos a distancia de televisores, habiéndose generalizado su uso en otros electrodomésticos como equipos de aire acondicionado, equipos de música, etc. y en general para aplicaciones de control remoto, así como en dispositivos detectores.Los LED se emplean con profusión en todo tipo de indicadores de estado (encendido/apagado) en dispositivos de señalización (de tránsito, de emergencia, etc.) y en paneles informativos. También se emplean en el alumbrado de pantallas de cristal líquido de teléfonos móviles, calculadoras, agendas electrónicas, etc., así como en bicicletas y usos similares. Existen además impresoras LED.

También se usan los LED en el ámbito de la iluminación (incluyendo la señalización de tráfico) es moderado y es previsible que se incremente en el futuro, ya que sus prestaciones son superiores a las de la lámpara incandescente y la lámpara fluorescente, desde diversos puntos de vista. La iluminación con LED presenta indudables

Se utiliza ampliamente en aplicaciones visuales, como indicadoras de cierta situación específica de funcionamiento y desplegar contadores

- Para indicar la polaridad de una fuente de alimentación de corriente continua.

- Para indicar la actividad de una fuente de alimentación de corriente alterna.

- En dispositivos de alarma.





Potencio-metro.


Un potenciómetro es una resistencia que podemos controlar su valor. Entonses de esta forma podemos controlar indirectamente la intensidad de corriente que fluye por un circuito si se lo conecta en paralelo, o la diferencia de potencial si esta conectado en serie.




Galería de imagenes.

Alessandro Giuseppe Antonio Anastasio Volta








Hans Christian Orsted








André-Marie Ampère










Michael Faraday 








William Sturgeon 










Georg Simon Ohm 








Gustav Robert Kirchhoff 















Samuel Finley Breese Morse 







Ernst Werner M. von Siemens










James Clerk Maxwell







William Crookes






Alexander Graham Bell 






Thomas Alva Edison




Nikola Tesla




Paul Julius Gottlieb Nipkow






Heinrich Rudolf Hertz





Joseph John "J.J." Thomson






John Ambrose Fleming




John William Mauchly








Nick Holonyak 






Diodo led.






Potencio-metro digital.